Myocardial Reloading After Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis
نویسندگان
چکیده
BACKGROUND Extracorporeal membrane oxygenation (ECMO) unloads the heart, providing a bridge to recovery in children after myocardial stunning. ECMO also induces stress which can adversely affect the ability to reload or wean the heart from the circuit. Metabolic impairments induced by altered loading and/or stress conditions may impact weaning. However, cardiac substrate and amino acid requirements upon weaning are unknown. We assessed the hypothesis that ventricular reloading with ECMO modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. METHODS AND RESULTS Sixteen immature piglets (7.8 to 15.6 kg) were separated into 2 groups based on ventricular loading status: 8-hour ECMO (UNLOAD) and postwean from ECMO (RELOAD). We infused into the coronary artery [2-(13)C]-pyruvate as an oxidative substrate and [(13)C6]-L-leucine as an indicator for amino acid oxidation and protein synthesis. Upon RELOAD, each functional parameter, which were decreased substantially by ECMO, recovered to near-baseline level with the exclusion of minimum dP/dt. Accordingly, myocardial oxygen consumption was also increased, indicating that overall mitochondrial metabolism was reestablished. At the metabolic level, when compared to UNLOAD, RELOAD altered the contribution of various substrates/pathways to tissue pyruvate formation, favoring exogenous pyruvate versus glycolysis, and acetyl-CoA formation, shifting away from pyruvate decarboxylation to endogenous substrate, presumably fatty acids. Furthermore, there was also a significant increase of tissue concentrations for all CAC intermediates (≈80%), suggesting enhanced anaplerosis, and of fractional protein synthesis rates (>70%). CONCLUSIONS RELOAD alters both cytosolic and mitochondrial energy substrate metabolism, while favoring leucine incorporation into protein synthesis rather than oxidation in the CAC. Improved understanding of factors governing these metabolic perturbations may serve as a basis for interventions and thereby improve success rate from weaning from ECMO.
منابع مشابه
Myocardial oxidative metabolism and protein synthesis during mechanical circulatory support by extracorporeal membrane oxygenation.
Extracorporeal membrane oxygenation (ECMO) provides essential mechanical circulatory support necessary for survival in infants and children with acute cardiac decompensation. However, ECMO also causes metabolic disturbances, which contribute to total body wasting and protein loss. Cardiac stunning can also occur, which prevents ECMO weaning, and contributes to high mortality. The heart may spec...
متن کاملQuantitative assessment of cardiac load-responsiveness during extracorporeal life support: case and rationale
We describe a case of a patient assisted by extracorporeal life support, in which we obtained the dynamic filling index, a measure for venous volume during extracorporeal life support, and used this index to assess cardiac load-responsiveness during acute reloading. While reloading, the obtained findings on cardiac pump function by the dynamic filling index were supported by trans-esophageal ec...
متن کاملThe effectiveness of extracorporeal membrane oxygenation in a patient with post myocardial infarct ventricular septal defect
BACKGROUND Post infarction ventricular septal defect (VSD) is an uncommon but life threatening complication of acute myocardial infarction. CASE PRESENTATION A 62-year-old woman was admitted with acute myocardial infarction (AMI). However, the day after angioplasty and stenting, Transthoracic echocardiography (TTE) showed post infarction VSD. We decided to insert an extracorporeal membrane ox...
متن کاملWeaning Strategy from Veno-Arterial Extracorporeal Membrane Oxygenation (ECMO)
Background: Significant advances in extracorporeal technology have led to the more widespread use of veno-arterial extracorporeal membrane oxygenation (VA ECMO) for cardiac failure. However, procedures for weaning from VA ECMO are not standar‐ dized. High death rate after successful weaning shows that many questions remain unresolved in this field. Objectives: In this review, we discuss data fr...
متن کاملTriiodothyronine Facilitates Weaning From Extracorporeal Membrane Oxygenation by Improved Mitochondrial Substrate Utilization
BACKGROUND Extracorporeal membrane oxygenation (ECMO) provides a bridge to recovery after myocardial injury in infants and children, yet morbidity and mortality remain high. Weaning from the circuit requires adequate cardiac contractile function, which can be impaired by metabolic disturbances induced either by ischemia-reperfusion and/or by ECMO. We tested the hypothesis that although ECMO par...
متن کامل